
Aaron Schultz
Software Developer
National Center for
Ecological Analysis and Synthesis

2008-06-04

Dynamic Loading of
Kepler Extensions

2

Outline

Standardized Directory Structure
What happens at Run-Time?
What happens at Build-Time?
Installing Extensions
Benefits
Risks
Reference

3

Standardized Directory Structure

An “extensions” folder under the kepler
directory contains a folder for each
extension.
Extension source files are kept in the
extension src directory and are compiled to
the extension bin directory
Each extension has a spcialized jar
manifest and would be package as KARs
Each extension has its own lib directory for
images, jars, native libraries, etc.
Each extension has its own demos and doc
directory
Any of these directories can be included or
ommitted

For example, an extension of only
actors could include only bin/actors

4

What Happens at Run-Time?

At run-time, extension resources are detected by the ExtensionManager in the
standardized Kepler extension directory structure (packaged or not)
An instance of a custom ClassLoader is created for each extension.

Extension classes and jars run in their own namespace, solving jar
dependency issues and Class naming conflicts (see next slide)

To achieve full jar dependency, class loader delegetion is restricted by package
(not the full binary class name)

Extension classes have full visibility of Core classes and can override
Core classes in their namespace without affecting the Core

Core classes run in their own namespace and have no visibility of extension
classes, except through system interfaces used as Core extension points
To modify classes in the Core namespace override information in the manifest
would request that a class be excluded from the core namespace and the
extension class or jar be used instead (in effect the same as the exp directory
now but would happen dynamically at run-time)

This mechanism can be used to allow extension developers to develop,
test, and request changes to the Core
Conflicts between different extension Core overrides would be managed
and handled before loading any classes

5

Peer Delegation Model

Peer class loading does not follow the traditional hierarchical delegation structure for class
loaders. Instead, it has a set of class loaders that are unrelated except that they have the
same parent (usually the system class loader). These class loaders can delegate not only to
their parent, but also to their peers.

From Demystifying class loading problems, Part 4

This kind of class loader structure allows discrete class spaces to exist within one JVM;
thus, it's very useful for running componentized products. A good example of this class
loading structure is an OSGi framework, such as the one Eclipse is built on.

http://www.ibm.com/developerworks/java/library/j-dclp4/index.html?S_TACT=105AGX02&S_CMP=EDU

6

Kepler Implementation of Peer Delegation Model

7

What Happens at Build-Time?

A utility is run once to auto detect the current build configuration
and generate either an Eclipse project, a Netbeans project, or a
set of Ant build files
Each extension would have a Manifest that included dependency
information, Core override information, version information/LSID, and
licensing information for that extension.
Extenders and developers use eclipse, netbeans or ant to build
that configuration. If the configuration changes (i.e. The
Manifest information changes), the utility would need to be
rerun.
This utility would use the same classes as the run-time system
for determining the configuration from the extension manifests

8

Installing Extensions

Initially, extensions could be installed by manual download and
extraction into the extensions directory of a previously installed
Kepler Core – restart of Kepler would auto-detect and load the
new extension
Later, custom menu options could be developed to automate
the download of extensions followed by an automated restart
Different “flavors” of Kepler could be developed by simply
including various extension KARS in with the installer

9

Benefits

This solution is very similar to several existing systems
Tomcat, Jrun, Eclipse, FireFox

Flexibility and power to do whatever we need to do to make
extensions work how we want them to work – few constraints
Simple and easily understandable separation of extensions from
Core (one extension, one directory/KAR)
Smooth migration process from current state of the Kepler code
and build process
Will work well with NMI system
Greatly reduced size to Core download
Running extensions in their own Namespace relieves extension
developers from worrying about conflicts with Core code or other
extensions
Extension developers can easily use their own code repositories

10

Drawbacks/Risks

Run-time auto detection and loading may affect
application startup speed
A custom solution means developing and maintaining
custom documentation of that solution
Effort level for implementing this solution is unknown

11

References

Java programming dynamics, Part 1 (IBM)
Demystifying class loading problems Parts 1-4 (IBM)
Dynamic Class Loading in the JavaTM Virtual Machine

http://www-128.ibm.com/developerworks/java/library/j-dyn0429/
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=demystifying+class+loading+problems
http://www.csg.is.titech.ac.jp/~muga/paper/others/oopsla/1998/liang.pdf

